History of radio § Broadcasting


                                                       
                                                     Radar


Radar is a radio location method used to locate and track aircraft, spacecraft, missiles, ships, vehicles, and also to map weather patterns and terrain. A radar set consists of a transmitter and receiver. The transmitter emits a narrow beam of radio waves which is swept around the surrounding space. When the beam strikes a target object, radio waves are reflected back to the receiver. The direction of the beam reveals the object's location. Since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received "echo", the range to the target can be calculated. The targets are often displayed graphically on a map display called a radar screenDoppler radar can measure a moving object's velocity, by measuring the change in frequency of the return radio waves due to the Doppler effect.
Radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. Parabolic (dish) antennas are widely used. In most radars the transmitting antenna also serves as the receiving antenna; this is called mono static radar. Radar which uses separate transmitting and receiving antennas is called bi static radar.

Airport surveillance radar – In aviation, radar is the main tool of air traffic control.  A rotating dish antenna sweeps a vertical fan-shaped beam of microwaves around the airspace and the radar set shows the location of aircraft as "blips" of light on a display called a radar screen. Airport radar operates at 2.7 – 2.9 GHz in the microwave S band . In large airports the radar image is displayed on multiple screens in an operations room called the TRACON (Terminal Radar Approach Control), where air traffic controllers direct the aircraft by radio to maintain safe aircraft separation.

Secondary surveillance radar – Aircraft carry radar transponder, transceivers which when triggered by the incoming radar signal transmit a return microwave signal. This causes the aircraft to show up more strongly on the radar screen. The radar which triggers the transponder and receives the return beam, usually mounted on top of the primary radar dish, is called the secondary surveillance radar. Since radar cannot measure an aircraft's altitude with any accuracy, the transponder also transmits back the aircraft's altitude measured by its altimeter, and an ID number identifying the aircraft, which is displayed on the radar screen.


Comments

Media College in Delhi Popular Posts

Embrace your body - Love the way you are!

Science is a beautiful gift to humanity; we should not distort it

गणेश चतुर्थी: भगवान गणेश के प्रति भक्ति और आदर का प्रतीक